Eradicating catastrophic collapse in interdependent networks via reinforced nodes.

نویسندگان

  • Xin Yuan
  • Yanqing Hu
  • H Eugene Stanley
  • Shlomo Havlin
چکیده

In interdependent networks, it is usually assumed, based on percolation theory, that nodes become nonfunctional if they lose connection to the network giant component. However, in reality, some nodes, equipped with alternative resources, together with their connected neighbors can still be functioning after disconnected from the giant component. Here, we propose and study a generalized percolation model that introduces a fraction of reinforced nodes in the interdependent networks that can function and support their neighborhood. We analyze, both analytically and via simulations, the order parameter-the functioning component-comprising both the giant component and smaller components that include at least one reinforced node. Remarkably, it is found that, for interdependent networks, we need to reinforce only a small fraction of nodes to prevent abrupt catastrophic collapses. Moreover, we find that the universal upper bound of this fraction is 0.1756 for two interdependent Erdős-Rényi (ER) networks: regular random (RR) networks and scale-free (SF) networks with large average degrees. We also generalize our theory to interdependent networks of networks (NONs). These findings might yield insight for designing resilient interdependent infrastructure networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The extreme vulnerability of interdependent spatially embedded networks

Recent studies show that in interdependent networks a very small failure in one network may lead to catastrophic consequences. Above a critical fraction of interdependent nodes, even a single node failure can invoke cascading failures that may abruptly fragment the system, whereas below this critical dependency a failure of a few nodes leads only to a small amount of damage to the system. So fa...

متن کامل

Simultaneous first- and second-order percolation transitions in interdependent networks.

In a system of interdependent networks, an initial failure of nodes invokes a cascade of iterative failures that may lead to a total collapse of the whole system in the form of an abrupt first-order transition. When the fraction of initial failed nodes 1-p reaches criticality p = p(c), the abrupt collapse occurs by spontaneous cascading failures. At this stage, the giant component decreases slo...

متن کامل

Enhancing resilience of interdependent networks by healing

Interdependent networks are characterized by two kinds of interactions: The usual connectivity links within each network and the dependency links coupling nodes of different networks. Due to the latter links such networks are known to suffer from cascading failures and catastrophic breakdowns. When modeling these phenomena, usually one assumes that a fraction of nodes gets damaged in one of the...

متن کامل

The robustness of interdependent clustered networks

It was recently found that cascading failures can cause the abrupt breakdown of a system of interdependent networks. Using the percolation method developed for single clustered networks by Newman [Phys. Rev. Lett. 103, 058701 (2009)], we develop an analytical method for studying how clustering within the networks of a system of interdependent networks affects the system’s robustness. We find th...

متن کامل

Recovery of Interdependent Networks.

Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy for nodes and develop an analytic and numerical framework for studying the concurrent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 13  شماره 

صفحات  -

تاریخ انتشار 2017